Danfoss

### **Table of Contents**

| 1. Overview                                                    |        |
|----------------------------------------------------------------|--------|
| 1.1 Introduction                                               | 1      |
| 1.2 About the manual                                           | 1      |
| 1.3 Assumptions                                                | 1      |
| 1.4 What you should already know                               | 1      |
| 1.5 LonWorks overview                                          | 2      |
| 1.6 The Lon (Local Operating Network) Concept 1.7 Applications | 2<br>2 |
| 1.8 Node arrangements                                          | 2      |
| 1.9 Message Passing                                            | 3      |
| 1.10 Collision dectection                                      | 4      |
| 1.11 Network Management                                        | 4      |
| 1.12 Routers and bridges                                       | 5      |
| 1.13 VLT LonWorks node                                         | 6      |
| 2. Free Topology Network Configuration                         |        |
| 2.1 Singly terminated bus loop                                 | 7      |
| 2.2 Doubly terminated bus loop                                 | 7      |
| 2.3 Star topology                                              | 7      |
| 2.4 Loop topology                                              | 7      |
| 2.5 Mixed topology                                             | 7      |
| 3. Free Topology Network Termination                           |        |
| 3.1 Free topology model                                        | 8      |
| 3.2 Terminator switch                                          | 8      |
| 4. Free Topology Wiring                                        |        |
| 4.1 System performance and cable selection                     | 9      |
| 4.2 Cable parameters                                           | 9      |
| 4.3 System specifications                                      | 9      |
| 4.4 Transmission specifications                                | 10     |
| 4.5 Doubly-terminated bus topology specifications              | 10     |
| 4.6 Free topology specifications                               | 10     |
| 5. Twisted Pair Network Configuration                          |        |
| 5.1 Doubly terminated bus topology                             | 11     |
| 5.2 Terminator switch                                          | 11     |
| 6. Transformer-Coupled Twisted Pair Wiring                     |        |
| 6.1 Performance specification                                  | 12     |
| 6.2 Communication on TP/XF-78 and TP/XF-1250 channels          | 12     |

| 7. | Cable     | Specifications                                                |          |
|----|-----------|---------------------------------------------------------------|----------|
|    | 7.1       | Level 4 cable                                                 | 13       |
|    | 7.2       | Cable suppliers                                               | 14       |
| 8. | Status    | LED                                                           |          |
|    | 8.1       | LED patterns                                                  | 15       |
|    |           | Possible service LED behaviors                                | 16       |
|    | 8.3       | LED behavior descriptions                                     | 17       |
| 9. | Servic    | e Switch                                                      |          |
|    | 9.1       | Description                                                   | 18       |
|    | 9.2       | Location                                                      | 18       |
| 10 | . Interfa | ace / Network Variables                                       |          |
|    | 10.1      | Drive control                                                 | 19       |
|    | 10.2      | 2 Network variable inputs to the VLT                          | 20,22,23 |
|    | 10.3      | B Drive feedback                                              | 20       |
|    | 10.4      | Network configuration                                         | 21       |
|    | 10.5      | 5 VLT configuration                                           | 22       |
|    | 10.6      | S Network variable output from the VLT                        | 21,23    |
|    | 10.7      | 7 Parameter access error codes                                | 23       |
|    | 10.8      | 3 Standard object support                                     | 25       |
|    | 10.9      | Network variables for node objects and standard object suppor | t25      |
| 11 | . Param   | neters                                                        |          |
|    | 11.1      | Parameter list                                                | 26       |
|    | 11.2      | 2 Parameter description                                       | 27       |
|    |           | B Control word                                                | 29       |
|    | 11.4      | Status word                                                   | 30       |

Danfoss

| Introduction                       | Portions of this manual are printed with the<br>permission of the Echelon Corporation and<br>the National Electrical Contractors<br>Association of the USA (NECA).<br>Echelon <sup>®</sup> , LonTalk <sup>®</sup> , Neuron <sup>®</sup> and<br>LonWorks <sup>®</sup> are registered trademarks of<br>the Echelon Corporation.                                                                                   | The documentation in this manual is<br>intended to provide you with<br>comprehensive information on how to<br>install and set up your LonWorks Option<br>Card for communication over a LonWorks<br>communication network.<br>For more specific information on installation and<br>operation of the AFD refer to the VLT Instruction<br>Manual.                                         |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| About this<br>manual               | This manual is intended to be used both<br>as an instructional and a reference manual.<br>It only briefly touches on the basics of the<br>LonWorks protocol whenever it is<br>necessary for gaining an understanding of<br>the LonWorks profile for drives and the<br>LonWorks Option Card for the Danfoss VLT<br>This manual is also intended to serve as a<br>guideline when you specify and optimize<br>your | communication system. The list of contents<br>is also a decision route that will guide you<br>through the decisions you have to make<br>before you set up your system.<br>Even if you are an experienced LonWorks<br>programmer, we suggest that you read this<br>manual in its entirety before you start<br>programming, since important information<br>can be found in all sections. |
| Assumptions                        | This manual assumes that you are using a LonWorks Option Card in conjunction with a Danfoss VLT 5000, with a control card that supports version 1.10 software or greater. It is also assumed that you have a controller                                                                                                                                                                                         | node that supports the interfaces in this<br>document and that all the requirements<br>stipulated in the controller node as well as<br>the VLT Adjustable Frequency Drive are<br>strictly observed as well as all limitations<br>therein.                                                                                                                                              |
| What you<br>should<br>already know | The Danfoss LonWorks Option Card is designed to communicate with any controller node that supports the interfaces defined in this document.                                                                                                                                                                                                                                                                     | It is assumed that you have full knowledge<br>of the capabilities and limitations of the<br>controller node.                                                                                                                                                                                                                                                                           |

# Danfoss VLT® 5000 LonWorks®

| LonWorks<br>Overview                                  | LonWorks is both an existing standard and<br>physical hardware developed by Echelon<br>Corporation.<br>Echelon's stated goal is to establish a<br>commodity solution to the presently<br>daunting problems of designing and<br>building control networks.                                                                                                                                                                                                                                                                                                                                                                                        | Customers are currently using LonWorks<br>for process control, building automation,<br>engine control, elevator control, life safety<br>systems, power distribution controls and<br>similar intelligent building applications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The Lon<br>(Local<br>Operating<br>Network)<br>Concept | The LonWorks communications structure<br>is similar to that of a LAN in that messages<br>are exchanged between a number of<br>processors continually. LonWorks control<br>devices are called nodes. The LonWorks<br>systems are determined Local Operating<br>Networks, or LONs. LON technology offers<br>a means for implementing distributed<br>systems that perform sensing, monitoring,<br>control, and other applications.<br>A LON allows intelligent devices, such as<br>actuators and sensors, to communicate<br>with one another through an assortment<br>of communications media using a standard<br>protocol. LON technology supports | distributed, peer-to-peer communications.<br>That is, individual network devices can<br>communicate directly with one another,<br>and a central control system is not required.<br>A LON is designed to move sense and<br>control messages which are typically very<br>short and which contain commands and<br>status information that trigger actions. LON<br>performance is viewed in terms of<br>transactions completed per second and<br>response time. The critical factor in LON<br>technology is the assurance of correct<br>signal transmission and verification. Control<br>systems do not need vast amounts of data,<br>but they do demand that the messages<br>they send and receive are absolutely<br>correct. |
| Applications                                          | A key benefit of LonWorks networks is their<br>ability to communicate across different<br>types of transmission media in a single<br>system. The NEURON chip's (the NEURON<br>chip is the heart of the LonWorks system)<br>communication port allows for the use of<br>transceivers for other media (e.g. coax, fiber<br>optic, etc.) to meet special needs.<br>With the proper design, the nodes become<br>generic building blocks that can be applied<br>in<br>various ways to control lighting (or any other<br>task) in many different buildings using a                                                                                     | variety of communications media. The<br>tasks which the nodes perform in any given<br>situation are determined by how they have<br>been connected and configured. Because<br>hardware design, software design, and<br>network design are all independent in a<br>LonWorks-based system, a node's<br>function can be programmed without<br>concern about the specifics of the<br>networks in which they will be used.<br>Physically, each node will consist of a<br>NEURON chip and a transceiver.                                                                                                                                                                                                                          |

Dantos

Node Arrangements

LonWorks nodes can be addressed either individually or in groups. A group can contain up to 64 nodes, and one LonWorks network can support up to 255 groups. Furthermore, any node can be part of up to 15 different groups. A subnet is very similar to a group, but can contain up to 127 nodes. A domain is the largest grouping of nodes. A single domain can handle up to 255 subnets. Thus a single domain can handle up to 32,385 separate nodes. A single node may be connected to no more than two domains.

The group structure has the advantage of allowing a number of nodes to be reached

at only one address. This method keeps the record keeping inside each chip to a minimum, and allows for faster operating times. However, individual addressing can be done at all levels of a LonWorks system, with high efficiency. The address table of a node contains entries for the group type and size, and tells the node how many acknowledgments to expect when it sends a message. It also tells the NEURON chip which domain (the largest possible grouping of nodes) to use, what this node's group member number is, (to identify an acknowledgment as coming from this node), and contains a transmit timer, a repeat timer, a retry count, a receive timer, and the group ID.

#### Message Passing

There are a number of trade-offs between network efficiency, response time, security, and reliability. Generally, LonWorks defaults to the greatest degree of safety and verification for all communications over the LON network. The LonTalk protocol (the operating system that coordinates the LonWorks system and is built into the chips) offers four basic types of message service:

The most reliable service is "acknowledged," end-to-end or acknowledged service, where a message is sent to a node or group of nodes and individual acknowledgments are expected from each receiver. If an acknowledgment is not received from all destinations, the sender times out and re-tries the transaction. The number of retries and time-out both selectable. are Acknowledgments are generated by the network CPU without intervention of the application. Transaction IDs are used to keep track of messages and acknowledgments so that the application does not receive duplicate messages.

An equally reliable service is "request/ response," where a message is sent to a node or group of nodes and individual responses are expected from each receiver. Incoming messages are processed by the application on the receiving side before a response is generated. The same retry and time-out options are available as with acknowledged service. Responses may include data, so that this service is particularly suitable for remote procedure call, or client/server applications.

The next most reliable service is "unacknowledged repeated," where a message is sent to a node or a group of nodes multiple times, and no response is expected. This service is typically used when broadcasting to large groups of nodes and when traffic generated by all the responses would overload the network.

The least reliable method is "unacknowledged," where a message is sent once to a node or group of nodes and no response is expected. This option is typically used when the highest performance is required, network bandwidth is limited, and the application is not sensitive to the loss of a message.

#### Collision Detection

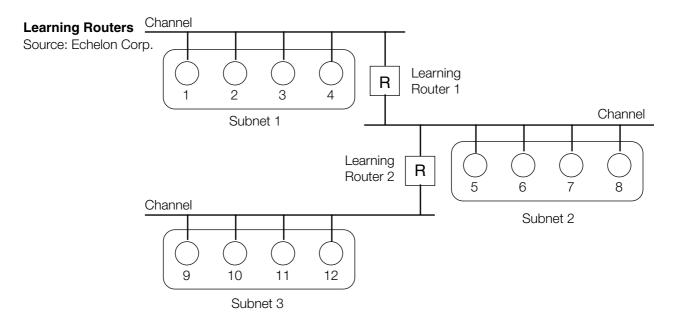
The LonTalk protocol uses a unique collision avoidance algorithm (a special mathematical equation) which allows an overloaded channel to carry close to its maximum capacity, rather than have its throughput reduced due to excessive collisions between messages. (Collisions are analogous to 10 people trying to talk all at once on a single telephone line. The messages are garbled and confused, and the contents of the messages are lost.) When using a communications medium that supports collision detection (twisted pair, for example), the LonTalk protocol can optionally

cancel transmission of a packet as soon as a collision is detected by the transceiver. This option allows the node to immediately retransmit any packet that has been damaged by a collision. Without collision detection, the node would have to wait the duration of the retry time to notice that no acknowledgment was received, at which time it would retransmit the packet, assuming knowledge or request/response service. For unacknowledged service, an undetected collision means that the packet is not received and no retry is attempted.

#### Network Management

Depending on the level of a given application, a LonWorks network may or may not require the use of a Network Management node. A Network Management node is a node that has been specifically designated to perform network management functions, such as:

- Find unconfigured nodes and download their network addresses.
- Stop, start, and reset node applications.
- Access node communication statistics.
- Configure routers and bridges.
- Download new applications programs.
- Extract the topology of a running network.


Danfoss

## Routers and Bridges

A router (or bridge) is a special node that consists of two connected NEURON chips, each connected to a separate channel, see figure. Routers and bridges pass packets back and forth between these channels. There are four types of routers: A repeater is the simplest form of router, simply forwarding all packets between the two channels. Using a repeater, a subnet can exist across multiple channels. A bridge simply forwards all packets which match its domains between the two channels. Using a bridge, a subnet can exist across multiple channels. Like a learning router, a configured router selectively routes packets between channels by consulting internal routing tables. Unlike a learning router, the contents of the internal routing tables are specified using Network Management commands. A learning router monitors the network traffic and learns the network topology at the domain/subnet level. The learning router then uses its knowledge to selectively route packets between channels.

Initially, each router sets its internal routing tables to indicate that all subnets could lie on either side of the router. Referring to figure, suppose that node 6 generates a message bound for node 2. Learning router 1 initially picks up the message. Examining the source subnet field of the message, the learning router notes in its internal routing tables that subnet 2 lies below it. The router then compares the source and destination subnet IDs and since they are different, the message is passed on. Meanwhile, learning router 2 has also passed the message on, making an appropriate notation in its internal routing tables regarding the location of subnet 2.

Suppose now that node 2 generates an acknowledgment. This acknowledgment is picked up by learning router 1, which now notes the location of subnet 1. Learning router 1 examines its internal routing tables, and noting that subnet 2 lies below, passes the message on. When the message appears on subnet 2, it is noted by both node 6 (the destination node), and learning router 2, which does not pass it on but merely notes that subnet 1, like subnet 2, lies somewhere above. Learning router 2 will not learn of the existence or location of subnet 3 until a message is originated from there. Subnets cannot cross routers. While bridges and repeaters allow subnets to span multiple channels, the two sides of a router must belong to separate subnets. The fact that routers are selective about the packets they forward to each channel can be used to increase the total capacity of a system in terms of nodes and connections.



VLT LonWorks The VLT LonWorks option will perform as Node an integrated part of the VLT 5000. The VLT LonWorks option will provide unmatched control and flexibility of the VLT Adjustable Frequency Drive over a variety of LonWorks Networks.

> The VLT LonWorks network interface consists only of SNVT's. The SNVT's support the LonUser motor controller profile along with VLT configuration, control and monitoring capabilities. Any combination of SNVT's can be used to operate the VLT.

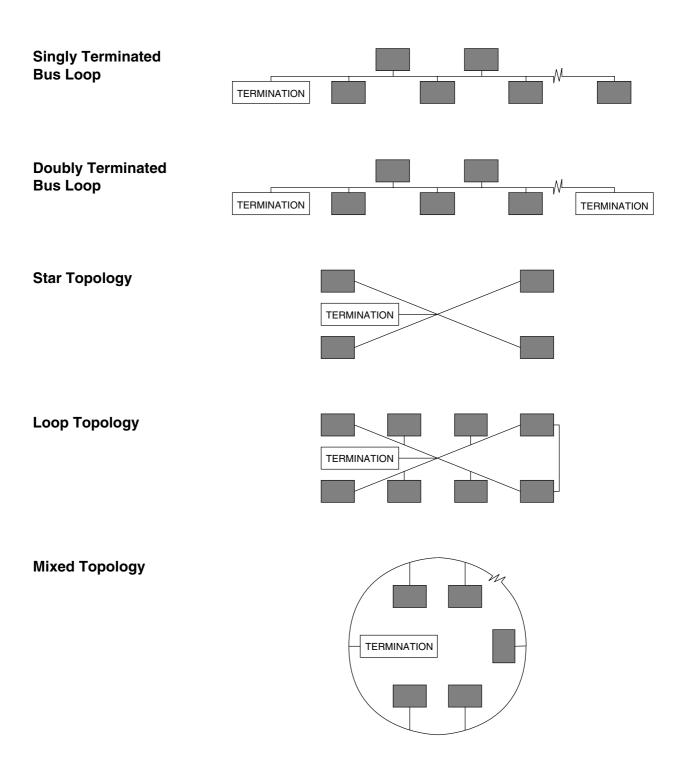
> Addressing nodes on the LonWorks network is performed at installation time by an installation tool or network management tool. Addressing requires the retrieval of a node's Neuron ID. The Neuron ID is a 48 bit number that uniquely identifies every manufactured Neuron chip. The VLT LonWorks option supports the three methods of addressing a node:

- Query and Wink The LonWorks option card is shipped with a domain of "0" and subnet of "1". Upon receiving the wink command, the VLT LonWorks option will flash the on-board Status LED so the installer can locate the node. The VLT LonWorks option will send out it's Neuron ID over the network in response to the query command.
- 2. Service Pin When the on-board service switch is in the "service" position, the VLT LonWorks option will send out it's Neuron ID over the network.

3. Neuron ID Label - The VLT LonWorks option card has a Neuron ID label that displays the Neuron ID as a 12 digit hexadecimal number. The installer can manually enter the Neuron ID during installation.

Binding is the installation time process of logically connecting one node's output network variable to another node's input network variable. To support binding, the VLT LonWorks option includes the node's interface file (XIF). The VLT LonWorks option does not transmit network variables over the network which are not bound so there will be no added overhead on the network.

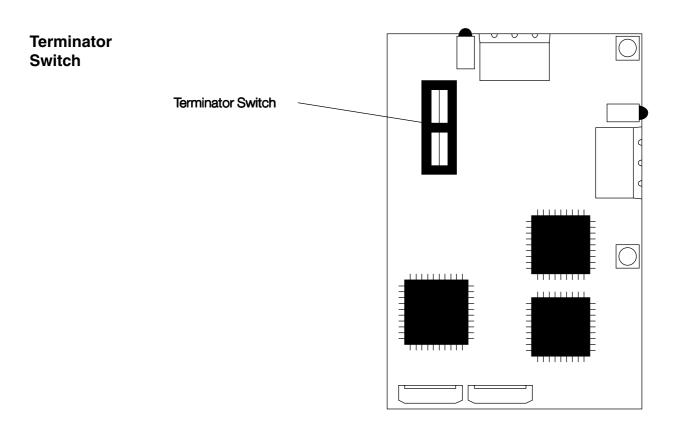
LonWorks supports many different types of transmission media. A LonWorks network physical layer can be: transformer coupled twisted pair (78 kbps and 1.25 Mbps), free topology, link power, power line, RF, RS-485, fiber optic, coaxial, and infrared.


The VLT LonWorks option supports four transmission media with three versions of the VLT LonWorks option card. The VLT LonWorks option card versions are:

- 1. 78 kbps transformer coupled twisted pair.
- 2. 1.25 Mbps transformer coupled twisted pair.
- 3. Free topology. The free topology node will also operate on a link power network.

A router is required to interface to a LonWorks network that is not supported by the three option card versions.

Dantoss


The FTT system is designed to support free topology wiring, and will accommodate bus, star, loop or any combination of these topologies. FTT-10 transceivers can be located at any point along the network wiring capability simplifies system installation and makes it easy to add nodes should the system need to be expanded. The figures present five different network topologies.



#### Free Topology Model

| Termination        | Pos 1        | Pos 2        |
|--------------------|--------------|--------------|
| No termination     | Net Term Off | Don't Care   |
| Single termination | Net Term On  | Net Term Off |
| Double termination | Net Term On  | Net Term On  |

NOTE: Option cards are shipped from factory with double termination activated.



Danfoss

| System<br>Performance<br>and<br>Cable Selection | FTT-10 system and transmission<br>specifications are outlined on the following<br>pages. Both of these specifications should<br>be met to ensure proper operation.<br>The system designer may choose a variety<br>of cables, depending on cost, availability,<br>and performance. Performance may vary<br>with | specification<br>resistance<br>velocity of<br>Echelon | , mutual ca<br>propagatic<br>will char<br>nce on th<br>strical parar | s on such fa<br>apacitance,<br>on.<br>acterize<br>e followin | and the<br>system<br>g cable |
|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------|------------------------------|
| Cable<br>Parameters                             | Cable Type                                                                                                                                                                                                                                                                                                     | Wire<br>dia./AWG                                      | Rloop<br>ý/km                                                        | C<br>nF.km                                                   | Vprop<br>% of c              |
|                                                 | Belden 85102, single twisted pair,<br>stranded 9/29, unshielded, plenum                                                                                                                                                                                                                                        | 1.3mm/16                                              | 28                                                                   | 56                                                           | 62                           |
|                                                 | Belden 8471, single twisted pair,<br>stranded 9/29, unshielded, non-plenum                                                                                                                                                                                                                                     | 1.3mm/16                                              | 28                                                                   | 72                                                           | 55                           |
|                                                 | Level IV 22AWG, twisted pair, typically solid & unshielded                                                                                                                                                                                                                                                     | 0.65mm/22                                             | 106                                                                  | 49                                                           | 67                           |
|                                                 | JY (St) Y 2x2x0.8, 4-wire helical twist, solid shielded                                                                                                                                                                                                                                                        | 0.8 mm/20.4                                           | 73                                                                   | 98                                                           | 41                           |
|                                                 | Note that the following specifications are for one network segment. Multiple segments may                                                                                                                                                                                                                      | be combin<br>the numbe                                |                                                                      | epeaters to<br>and distar                                    |                              |

#### System Specifications \*

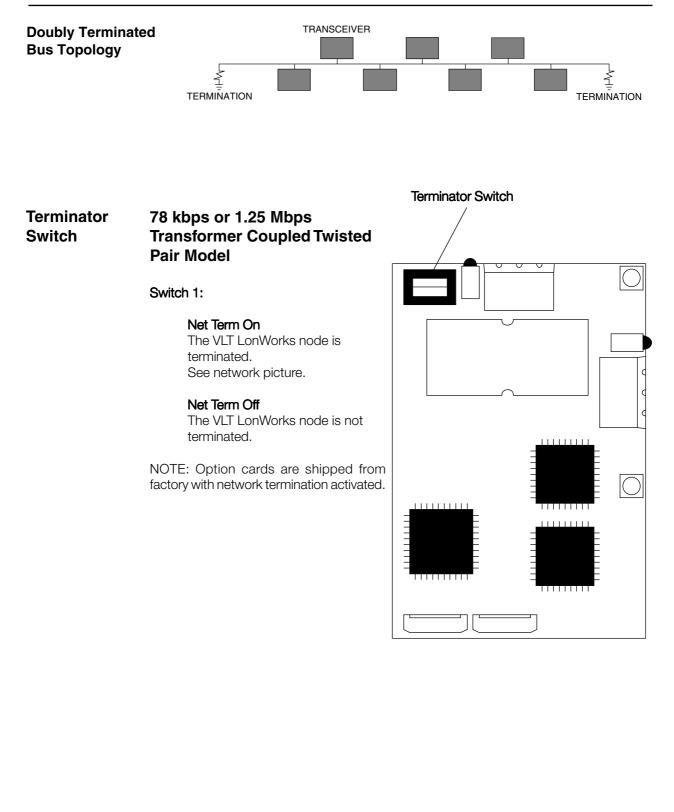
- Up to 64 FTT-10 transceivers, or 128 LPT-10 transceivers are allowed per network segment.
- The average temperature of the wire • must not exceed +55°C, although individual segments of wire may be as hot as +85°C.

Both types of transceivers may be . used on a given segment, provided that the following constraint is met: (2 x number of FTT-10 transceivers) + (1 x number of LPT-10 transceivers) - 128



#### Transmission Specifications

Free Topology nodes run at 78kbps transmission speeds.


#### Doubly-Terminated Bus Topology Specifications

|                   | Maximum bus length for<br>segments with<br>FTT-10 tranceivers only | Maximum bus length for<br>segments with both FTT-10<br>and LPT-10 transceivers | Units  |
|-------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------|--------|
| Belden 85102      | 2700                                                               | 2200                                                                           |        |
| Belden 8471       | 2700                                                               | 2200                                                                           | meters |
| Level IV, 22AWG   | 1400                                                               | 1150                                                                           |        |
| JY (St) Y 2x2x0.8 | 900                                                                | 750                                                                            |        |

## Free Topology Specifications

|                   | Maximum<br>node-to-node distance | Maximum<br>total wire length | Units  |
|-------------------|----------------------------------|------------------------------|--------|
| Belden 85102      | 500                              | 500                          |        |
| Belden 8471       | 400                              | 500                          | meters |
| LeveleIV, 22AWG   | 400                              | 500                          |        |
| JY (St) Y 2x2x0.8 | 320                              | 500                          |        |

antoss





#### Performance Specification

The table provides a summary of the performance specifications for the 78 kbps and

1.25 Mbps transformer-coupled twisted pair channels.

| Communication<br>on TP/XF-78 | Performance<br>Specifications                                                                     | TP/XF-78                                                 | TP/XF-1250                                                                              |  |
|------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------------------------------------|--|
| and TP/XF-<br>1250           | Transmission Speed                                                                                | 78kbps                                                   | 1.25Mbps                                                                                |  |
|                              | Nodes per Channel                                                                                 | 64 (0 to +70°C)                                          | 64 (0 to +70°C)                                                                         |  |
| channels;                    | Network Bus Wiring                                                                                | UL Level IV, 22 AWG (0.65 mm                             | n) twisted pair                                                                         |  |
|                              | Network Stub Wiring                                                                               | UL Level IV, 22 or 24 AWG (0.5                           | 5 mm) twisted pair                                                                      |  |
|                              | Network Bus Length<br>Typical <sup>1</sup><br>Worst case <sup>2</sup>                             | 2000m<br>1330m                                           | 500m<br>125m                                                                            |  |
|                              | Maximum Stub Length 3                                                                             | 3m                                                       | 0.3m (0 to 70°C)                                                                        |  |
|                              | Network Terminators                                                                               | Required at both ends of the network                     |                                                                                         |  |
|                              | Temperature<br>Operating<br>Non-operating                                                         | 0 to +70°C (64 node load)<br>-40 to +85°C (44 node load) | 0 to +70°C (64 node load)<br>–20 to +85°C (32 node load)<br>–40 to +70°C (20 node load) |  |
|                              | Electrostatic Discharge<br>to Network Connectors<br>No Errors<br>No Hard Failures                 | to 15,000V<br>to 20,000V                                 | to 15,000V<br>to 20,000V                                                                |  |
|                              | Isolation between Network<br>and I/O Connectors<br>0 - 60Hz (60 seconds)<br>0 - 60Hz (continuous) | 1,000 VRMS<br>277 VRMS                                   | 1,000 VRMS<br>277 VRMS                                                                  |  |

- Typical conditions are 20°C, +5VDC supply 1 voltage, normal wire temperature, and 64 evenly distributed nodes.
- 2 Worst case conditions are the combined effect of worst case conditions of all the above performance parameters - nodes per channel, network bus length, stub length, temperature, etc.
- 3 The stub length in the table assumes a mutual capacitance of 17 pF/ft (56 pF/m) for the twisted pair stub cable. Actual lengths may be shorter or longer depending on the actual, measured value.

NOTE:

It is necessary to terminate the ends of a TP/XF-78 or TP/XF-1250 twisted pair bus to minimize refelections. Failure to terminate the bus will degrade network performance.

Danfoss

### Level 4 Cable

The Level 4 cable specification used by Echelon and as originally defined by the National Electrical Manufacturers Specifications Association of the USA (NEMA) differs from the Category IV specification proposed by the Electronic

Industries Association/Telecommunication Industry Association (EIA/TIA). The Level 4 cable specifications used by Echelon are presented below, and are followed by a list of Level 4 cable suppliers.

| Specifications apply to shielded or un 24AWG (0.5mm) cable shown                                                                                                                                                                                                                                                                                                                            | · · · · · · · · · · · · · · · · · · · |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--|--|--|
| DC Resistance (Ohms/1000 feet at 20°C)<br>maximum for a single copper conductor<br>regardless of whether it is solid or stranded<br>and is or is not metal-coated.                                                                                                                                                                                                                          | 18.0 [28.6]                           |  |  |  |
| DC Resistance Unbalance<br>(percent) maximum                                                                                                                                                                                                                                                                                                                                                | 5                                     |  |  |  |
| Mutual Capacitance of a Pair<br>(pF/foot) maximum                                                                                                                                                                                                                                                                                                                                           | 17                                    |  |  |  |
| Pair-to-Ground Capacitance Unbalance<br>(pF/1000 feet) maximum                                                                                                                                                                                                                                                                                                                              | 1000                                  |  |  |  |
| Impedan                                                                                                                                                                                                                                                                                                                                                                                     | ce (Ohms)                             |  |  |  |
| 772kHz                                                                                                                                                                                                                                                                                                                                                                                      | 102 ±15% (87-117)                     |  |  |  |
| 1.0MHz                                                                                                                                                                                                                                                                                                                                                                                      | 100 ±15% (85-115)                     |  |  |  |
| 4.0MHz                                                                                                                                                                                                                                                                                                                                                                                      | 100 ±15% (85-115)                     |  |  |  |
| 8.0MHz                                                                                                                                                                                                                                                                                                                                                                                      | 100 ±15% (85-115)                     |  |  |  |
| 10.0MHz                                                                                                                                                                                                                                                                                                                                                                                     | 100 ±15% (85-115)                     |  |  |  |
| 16.0MHz                                                                                                                                                                                                                                                                                                                                                                                     | 100 ±15% (85-115)                     |  |  |  |
| 20.0MHz                                                                                                                                                                                                                                                                                                                                                                                     | 100 ±15% (85-115)                     |  |  |  |
| Attenuation (dB/1000 feet at 20°C) maximum                                                                                                                                                                                                                                                                                                                                                  |                                       |  |  |  |
| 772kHz                                                                                                                                                                                                                                                                                                                                                                                      | 4.5 [5.7]                             |  |  |  |
| 1.0MHz                                                                                                                                                                                                                                                                                                                                                                                      | 5.5 [6.5]                             |  |  |  |
| 4.0MHz                                                                                                                                                                                                                                                                                                                                                                                      | 11.0 [13.0]                           |  |  |  |
| 8.0MHz                                                                                                                                                                                                                                                                                                                                                                                      | 15.0 [19.0]                           |  |  |  |
| 10.0MHz                                                                                                                                                                                                                                                                                                                                                                                     | 17.0 [22.0]                           |  |  |  |
| 16.0MHz                                                                                                                                                                                                                                                                                                                                                                                     | 22.0 [27.0]                           |  |  |  |
| 20.0MHz                                                                                                                                                                                                                                                                                                                                                                                     | 24.0 [31.0]                           |  |  |  |
| Worst-Pair Near-End Crosstalk (dB) minimum. Values are shown for information only.<br>The minimum next coupling loss for any pair combination at room temperature is to be<br>greater than the value determined using the formula NEXT ( $F_{MHz}$ ) > NEXT (0.772) –<br>$15_{log10}$ ( $F_{MHz}$ /0.772) for all frequencies in the range of 0.772MHz – 20MHz for a<br>length of 1000 feet |                                       |  |  |  |
| 772kHz                                                                                                                                                                                                                                                                                                                                                                                      | 58                                    |  |  |  |
| 1.0MHz                                                                                                                                                                                                                                                                                                                                                                                      | 56                                    |  |  |  |
| 4.0MHz                                                                                                                                                                                                                                                                                                                                                                                      | 47                                    |  |  |  |
| 8.0MHz                                                                                                                                                                                                                                                                                                                                                                                      | 42                                    |  |  |  |
| 10.0MHz                                                                                                                                                                                                                                                                                                                                                                                     | 41                                    |  |  |  |
| 16.0MHz                                                                                                                                                                                                                                                                                                                                                                                     | 38                                    |  |  |  |
| 20.0MHz                                                                                                                                                                                                                                                                                                                                                                                     | 36                                    |  |  |  |

| Level 4   |                   | Anixter stocks the following cables which they will cut to size. |                                                    |  |
|-----------|-------------------|------------------------------------------------------------------|----------------------------------------------------|--|
| Cable     | Anixter           | Part No.                                                         | Description                                        |  |
| Suppliers | 4711 Golf Road    | 9D220150                                                         | 22 AWG (0.65mm) / 1 pair solid, unshielded, PVO    |  |
|           | Skokie, IL 60076  | 9F220150                                                         | 22 AWG (0.65mm) / 1 pair solid, shielded, PVC      |  |
|           |                   | 9D220250                                                         | 22 AWG (0.65mm) / 2 pair solid, unshielded, PVO    |  |
|           | Ph: 708-677-2600  | 9F220254                                                         | 22 AWG (0.65mm) / 2 pair solid, shielded, PVC      |  |
|           | FAX: 708-677-2668 | 9H2201504                                                        | 22 AWG (0.65mm) / 1 pair solid, unshielded, plenum |  |
|           |                   | 9J2201544                                                        | 22 AWG (0.65mm) / 1 pair solid, shielded, plenum   |  |
|           |                   | 9H2202504                                                        | 22 AWG (0.65mm) / 2 pair solid, unshielded, plenum |  |
|           |                   | 9J2202544                                                        | 22 AWG (0.65mm) / 2 pair solid, shielded, plenum   |  |

The following table lists cables stocked by Connect-Air.

| Connect-Air         | Part No.   | Description                                         |
|---------------------|------------|-----------------------------------------------------|
| International, Inc. | W221P-1002 | 22 AWG (0.65mm) / 1 pair strand, unshielded, PVC    |
| 50-37th Street N.E. | W222P-1004 | 22 AWG (0.65mm) / 2 pair strand, unshielded, PVC    |
| Auburn, WA 98002    | W221P-1003 | 22 AWG (0.65mm) / 1 pair strand, shielded, PVC      |
|                     | W222P-1005 | 22 AWG (0.65mm) / 2 pair strand, shielded, PVC      |
| Ph: 206-813-5599    | W221P-2001 | 22 AWG (0.65mm) / 1 pair strand, unshielded, plenum |
| FAX: 206-813-5699   | W221P-2003 | 22 AWG (0.65mm) / 2 pair strand, unshielded, plenum |
|                     | W221P-2002 | 22 AWG (0.65mm) / 1 pair strand, shielded, plenum   |
|                     | W222P-2004 | 22 AWG (0.65mm) / 2 pair strand, shielded, plenum   |

| Link Power/   | Belden             | Part No. | Description                                        |
|---------------|--------------------|----------|----------------------------------------------------|
| Free Topology | P.O. Box 1980      | 8471     | 16 AWG (1.3mm) / 1 pair strand, unshielded, PVC    |
| Cable         | Richmond, IN 47375 | 85102    | 16 AWG (1.3mm) / 1 pair strand, unshielded, plenum |
| Suppliers     |                    |          |                                                    |

Level 4 22AWG (0.65mm) cables may also be used. Ph: 206-813-5599

<u>Danfoss</u>

#### Status LED

The VLT LonWorks Option card includes two LED's to display the communication status of the VLT LonWorks option, display the state of the Neuron chip, and respond to the network management "wink" command. The on board LEDs are the Service LED (LED 1, red) and the Status LED (LED 2, green).

#### The Status LED patterns are:

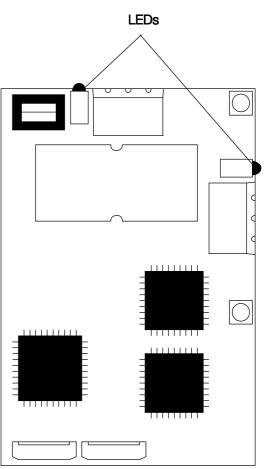
#### ON;

There is power on the board but there has not been any communication to an input network variable in the last 2 seconds.

#### Flashing 10 times per second;

There is regular network communication to the VLT's input network variables.

#### Flashing intermittently;

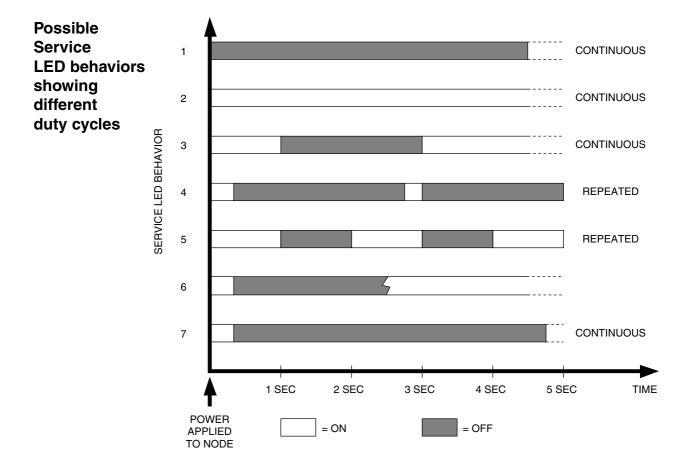

There is network communication to the VLT's input network variables but input network variables are received at a period greater than 2 seconds.

#### Flashing 5 times per second;

The response to the network management "Wink" command. The VLT LonWorks node must be reset to leave the wink state.

#### OFF;

No power on board or hardware fault.






Service LED

The Service LED will display the state of the Neuron chip. The figure below shows

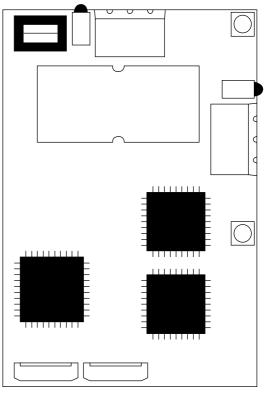
the Service LED patterns and the table on the following page explains the patterns.



Danfoss

Table 3.1

**Service LED** Explanation of the service LED behaviors shown in preceding figure.


| Behavior | Context                                                                                                                  | Likely Explanation                                                                                                                                                                                        |  |  |
|----------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1        | Power-up of a Neuron 3120xx<br>Chip-based node, or a Neuron<br>3150 Chip-based node with<br>any Prom                     | Bad node hardware                                                                                                                                                                                         |  |  |
| 2        | Power-up of a Neuron 3120xx<br>Chip-based node, or a Neuron<br>3150 Chip-based node with<br>any PROM                     | Bad node hardware                                                                                                                                                                                         |  |  |
| 3        | Power-up/Reset                                                                                                           | Node is applicationless                                                                                                                                                                                   |  |  |
|          |                                                                                                                          | May be caused by the Neuron Chip firm-<br>ware when a mismatch occurs on appli-<br>cation checksum                                                                                                        |  |  |
| 4        | Anytime                                                                                                                  | Watchdog timer resets occuring                                                                                                                                                                            |  |  |
|          |                                                                                                                          | Possible corrupt EEPROM                                                                                                                                                                                   |  |  |
|          |                                                                                                                          | For a Neuron 3150 Chip-based node, use<br>a newly programmed PROM, or EEBLAN<br>and follow bringing up procedure                                                                                          |  |  |
| 5        | Anytime                                                                                                                  | Node is unconfigured but has an applica-<br>tion. Procede with loading the node.                                                                                                                          |  |  |
| 6        | Using EEBLANK on a Neuron<br>3150 Chip-based custom node                                                                 | The OFF duration is approximately 10<br>seconds. After this OFF time the service<br>LED should turn ON and stay ON,<br>indicating the completion of the blanking<br>process.                              |  |  |
| 6        | First power-up with a new<br>PROM on a Neuron 3150 Chip-<br>based custom node. Applicat-<br>less firmware state exported | The OFF duration is approximately 1<br>second. Service LED should then turn ON<br>and stay ON indicating an applicationless<br>state.                                                                     |  |  |
| 6        | First power-up with a new<br>PROM on a Neuron 3150 Chip-<br>based custom node. Uncon-<br>figured firmware state exported | The OFF duration is approximately 1-15<br>seconds depending on the application size<br>and system clock. Service LED should<br>then begin flashing as in behavior 5 indi-<br>cating an unconfigured state |  |  |
| 6        | First power-up with a new<br>PROM on a Neuron 3150 Chip-<br>based custom node. Config-<br>ured firmware state exported   | The OFF duration is indefinite (1-15<br>seconds to load internal EEPROM; stays<br>OFF indicating configured state.)                                                                                       |  |  |
| 7        | Anytime                                                                                                                  | Node is configured and running normally                                                                                                                                                                   |  |  |



Service Switch The Service Switch supports one of the addressing methods used to retrieve the Neuron ID.

When the service switch is in the "service" position, the VLT LonWorks option continually sends it's Neuron ID over the network.

For normal network operation, the Service Switch should be in the "normal" position.



Interoperability refers to the ability of independent nodes to operate together over the LonWorks network. The LonMark program was developed to address interoperability issues. The VLT Lonworks option supports the following LonMark activities to improve interoperability:

Dantos

- Standard Network Variable Types 1. (SNVT's); SNVT's define the units, limits and resolution of network variables so that nodes have a common platform for representing data items. The VLT LonWorks option only uses SNVT's to transmit and receive data over the LonWorks network.
- 2. Standard Objects; Standard Objects are a collection of SNVT's to perform a function. The VLT LonWorks option supports the node object and a controller standard object as defined in the LonMark Interoperability guidelines 2.0. The controller object contains the adjustable frequency motor controller profile along with the other features included in the VLT LonWorks option.
- LonMark Interoperability Association З. Tast Groups (LonUsers Groups); Tast groups define SNVT's and standard objects to create standards and models to be used by particular applications. Danfoss is active in defining standards for LonUser groups.

This section will group the SNVT's into five functions: drive control, drive feedback, drive configuration, network configuration and standard object support.

To support a variety of controllers, the VLT LonWorks option offers multiple SNVT's for selected drive functions. Reference 1, 2, or 3 can be used to send a frequency reference to the VLT. Drive output 1, 2 or 3 can be used to determine the output frequency of the VLT. Controlword or Start/ Stop/Reset fault can be used to control the operation of the drive. Statusword, Drive status, or Object status can be used to monitor the state of the drive and motor. Alarm or Object alarm can be used to determine that a fault condition exists in the drive.

#### NB!



In order to optimize network performance and to insure correct VLT operation, only one SNVT should be used for the drive control, frequency reference, and frequency output functions.

A controller node can support any number of VLT SNVT's and any combination of SNVT's (note the above exceptions) can be used. The degree of control and flexibility of the VLT over the network depends on the capabilities built into the controller node.

The VLT LonWorks option supports the following SNVT's for flexible speed and operational control of the VLT over the LonWorks network. Table 4.1 refers to the control network variables that are supported by the VLT LonWorks option.

Reference 1 is an output frequency reference command. The network variable nviRefPcnt, is a signed value in percentage of maximum frequency (PNU 202).

Drive control is limited to start/stop and reset fault. For complete operational control of the VLT, the Controlword should be used.

The function Max receive time can be used to determine the health of the controller/ VLT connection. The VLT can be programmed to react in a pre-determined manner (PNU 824) if an input network signal is not received in the time specified by the Max receive time.

Start/stop and reset fault use SNVT lev disc ST OFF is interpreted as low or"0". ST\_LOW, ST\_MED, ST\_HIGH, and ST ON are interpreted as high or"1".

Reference 2 is a frequency reference command. The network variable nviRef Rads, is a signed value in rad/second.

Reference 3 is a frequency reference command. The network variable nviRefHz is an unsigned value in Hz.

The input network variable nviControlword is a commanded 16-bit word that provides full operation control of the drive such as start/stop, reverse, reset fault, quick stop etc.

The Controlword is defined in Chapter 5, Parameter Description.

#### **Drive Control**

| Table 4.1                                              | Function     | SNVT type        | Variable Name  | Units       | Max     | Min      |
|--------------------------------------------------------|--------------|------------------|----------------|-------------|---------|----------|
| Network                                                | Control word | SNVT_state       | nviControlword | 16 Boolean  | NA      | NA       |
| Variable                                               | Reference 2  | SNVT_angle_vel   | nviRefRads     | 0.1 rad/sec | 3276.7  | -3276.8  |
| Inputs to the     Reference 3       VLT     Start/Stop |              | SNVT_freq_hz     | nviRefHz       | 0.1 Hz      | 6553.5  | 0        |
|                                                        |              | SNVT_lev_disc    | nviStartstop   | Boolean     | Start   | Stop     |
|                                                        | Reference 1  | SNVT_lev_percent | nviRefPcnt     | 0.005%      | 163.835 | -163.840 |
|                                                        | Reset fault* | SNVT_lev_disc    | nviResetFault  | Boolean     | Reset   | Enable   |

\* Reset on a transition from 0 to 1. A "0" must be sent after reset to enable the next reset.

#### Drive Feedback

The VLT LonWorks option provides 16 output network variables containing important drive and motor feedback data. Feedback network variables are output on a change in value with transmission rates limited by Min send time. The Min send time function specifies the minimum time between transmissions of a feedback network variable. The VLT LonWorks option will only transmit "bound" feedback network variables.

- 1. Drive Status represents the status of the VLT. nvoDrvStatus is a feedback network variable that represents the condition of the VLT. The four defined drive states (0/1) are: No fault/Drive tripped (bit 15), No warning/Warning (bit 14), Not running/Running (bit 13), and Auto/Manual control (bit 12). If a more descriptive drive status message is required then Status word should be used.
- 2. The network variables that represent Drive Status, Current, Energy, and Power will be output on a change in value. The output rate for each network variable will be limited by the Min send time function.
- 3. Drive output 1 is output frequency of the VIT. The network variable nvoOutputPcnt is a signed value in percentage of Max frequency (PNU 202). Drive output 1 (or Drive output 2 or 3) can be used by the controller node to determine the health of the controller/VLT connection. The network variables that represent output frequency will be transmitted as described above, but with a maximum transmission rate defined by Max send time. The maximum send time function is disabled when the network variable nciMaxsendT is not configured or set to "0".

Drive output 1, 2, or 3 will have a maximum time between transmission limit set by the Max send time. The function Max send time can be set to allow a controller node to determine the health of the controller/ VIT connection.

Table 4.2 refers to the network variables supported by the VLT LonWorks option.

- 4. The network variable nvoStatusword represents the status of the VLT and motor. Statusword is defined in Chapter 5, Parameter Description.
- 5. Drive output 2 and Drive output 3 are the output frequency of the VLT. The network variable nvoOutputRads is a signed value in rad/sec. The network variable nvoOutputHz is an unsigned value in Hz.
- 6. The network variables that represent Statusword, Output voltage, Digital input, Alarm, Warning 1, Warning 2, DC voltage, Motor temperature, and Inverter temperature are transmitted over the network on a change in value. The output rate for each network variable is limited by Min send time.
- 7. The network variables that represent Drive output 2 and Drive output 3 are transmitted as described above but with a maximum time between transmissions set by Max send time. The Max send time function is disabled when the configuration network variable nciMaxsendT is not configured or is set to "0".

Dantos

Table 4.2 Network Variable Outputs from the VLT

| Function       | SNVT type        | Variable Name  | Units       | Max     | Min      |
|----------------|------------------|----------------|-------------|---------|----------|
| Drive status   | SNVT_state       | nvoDrvStatus   | 16 Boolean  | NA      | NA       |
| Drive output 1 | SNVT_lev_percent | nvoOutputPcnt  | 0.005%      | 163.835 | -163.840 |
| Current        | SNVT_amp         | nvoDrvCurnt    | 0.1 amps    | 3276.7  | -3276.8  |
| Energy         | SNVT_elec_kwh    | nvoDrvEnrg     | 1 kWH       | 65,535  | 0        |
| Power          | SNVT_power_kilo  | nvoDrvPwr      | 0.1 KW      | 6553.5  | 0        |
| Statusword     | SNVT_state       | nvoStatusword  | 16 Boolean  | NA      | NA       |
| Drive output 2 | SNVT_angle_vel   | nvoOutputRads  | 0.1 rad/sec | 3276.7  | -3276.8  |
| Drive output 3 | SNVT_freq_hz     | nvoOutputHz    | 0.1 Hz      | 6553.5  | 0        |
| Output voltage | SNVT_volt        | nvoVoltage     | 0.1 V       | 3276.7  | -3276.8  |
| Digital input  | SNVT_state       | nvoDigitlInput | 16 Boolean  | NA      | NA       |
| Alarm          | SNVT_state       | nvoAlarmword   | 16 Boolean  | NA      | NA       |
| Warning 1      | SNVT_state       | nvoWarning1    | 16 Boolean  | NA      | NA       |
| Warning 2      | SNVT_state       | nvoWarning2    | 16 Boolean  | NA      | NA       |
| DC voltage     | SNVT_volt        | nvoDCVolt      | 0.1 V       | 3276.7  | -3276.8  |
| Motor temp     | SNVT_lev_cont    | nvoTempMtr     | 0.5 %       | 100     | 0        |
| Inverter temp  | SNVT_lev_cont    | nvoTempInvrtr  | 0.5 %       | 100     | 0        |

#### Network Configuration

The configuration parameters are network variable inputs to the VLT. Configuratioin parameters only need to be set one time, usually at installation. Table 4.3 refers to the configuration network variables supported by the VLT LonWorks option.

- 1. The Min send time function sets the minimum period between transmissions for all output network variables using the network variable nciMinSendT.
- 2. The Max receive time function performs the communications watchdog function for the VLT using the configuration network variable nciMaxReceiveT. The LonWorks option will initiate bus-timeout activities when the Max receive time has expired without receiving an input network variable. The action taken by the VLT depends on the setting of VLT parameter 824.

The communication watchdog function is disabled when the network variable nciMax ReceiveT is not configured or set to "0". 3. The Max send time function sets the maximum time between transmissions for the feedback network variables representing Drive output 1, 2, or 3 using the configuration network variable nciMaxSendT. This function can be used by the controller to monitor the health of the VLT and controller connection.

The Max send time function is disabled when nciMaxSendT is not configured or set to "0".

| Table 4.3<br>Network                              | Function               | SNVT<br>type            | Variable<br>Name    | Units | Max                                              | Min                                                                                  | Default                                                |
|---------------------------------------------------|------------------------|-------------------------|---------------------|-------|--------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------|
| Variable<br>Configuration<br>Inputs to the<br>VLT | Min send<br>time       | SNVT<br>_elapsed<br>_tm | nciMin-<br>SendT    | time  | 0 days<br>0 hours<br>1 min<br>5 sec<br>535 msec  | 0 days<br>0 hours<br>0 min<br>0 sec<br>100 msec <sup>1</sup><br>30 msec <sup>2</sup> | 0 days<br>0 hours<br>0 min<br>0 sec<br>500 msec        |
|                                                   | Max<br>receive<br>time | SNVT<br>_elapsed<br>_tm | nciMax-<br>ReceiveT | time  | 0 days<br>18 hours<br>12 min<br>15 sec<br>0 msec | 0 days<br>0 hours<br>0 min<br>1 sec<br>0 msec                                        | 0 days<br>0 hours<br>0 min<br>0 sec<br>0 msec<br>(Off) |
|                                                   | Max<br>send<br>time    | SNVT<br>_elapsed<br>_tm | nciMax-<br>SendT    | time  | 0 days<br>0 hours<br>1 min<br>5 sec<br>535 msec  | 0 days<br>0 hours<br>0 min<br>0 sec<br>100 msec <sup>1</sup><br>30 msec <sup>2</sup> | 0 days<br>0 hours<br>0 min<br>0 sec<br>0 msec<br>(Off) |

<sup>1</sup> for 78 kbps Transformer coupled twisted pair and 78 Kbps free topology transceiver models <sup>2</sup> for 1.25 Mbps Transformer coupled twisted pair transceiver model

<sup>2</sup> for 1.25 Mbps Transformer coupled twisted pair transceiver model.

#### VLT Configuration

A controller node can monitor or modify any defined VLT parameter by supporting the Parameter access command and the Parameter access response functions. These functions allow a controller complete control of the drive, access to all of the features of the VLT, and the ability to configure drives with pre-defined settings using the network variables nviParamCmd and nvoParamResp.

The following definitions describe how the fields of SNVT\_preset are used by the VLT LonWorks option:

1. Learn

This field contains the function code for the VLT. The enumeration definitions for this field are: LN\_RECALL (0), LN\_LEARN\_CURRENT (1), LN\_LEARN\_VALUE (2), and LN\_REPORT\_VALUE (3). LN\_RECALL (0) and LN\_REPORT\_VALUE (3) are interpreted as read commands. LN\_LEARN\_CURRENT (1) and LN\_LEARN\_VALUE (2) are interpreted as write commands.

Any other value in this field will result in an error message in the Parameter access response.

2. Selector

This field contains the VLT parameter number that is to be written or read. Requests for undefined parameters will result in an error message in the Parameter access response. The controlling device should check the parameter number of the response message to the requested parameter number to determine that the information received is the requested information and not a response to another controller or from another VLT.

3. Value

This 4 byte array contains the parameter information to and from the VLT. All VLT parameters use 16 bit signed or unsigned values except for the ramp times. Ramp times, PNU 215 to PNU 218, are 32 bit unsigned. For 16 bit values, the most significant byte of data will be stored in value [2] and the least significant byte of data will be stored in value [3]. For drive parameters 215, 216, 217, and 218, the most significant byte of data will be stored in value [0] and the least significant byte will be stored in value [3]. In the event of an error message, the VLT will send 0xff in value [0] and an error code in value [3]. The error codes are defined in table 4.6.

Danfoss

#### VLT Configuration (continued)

4. Day, Hour, Minute, Second, Millisecond The time fields will not be supported by the VLT LonWorks option. The VLT will respond to parameter access requests as soon as

they are received. Any values in the time fields of the Parameter access command will be ignored. All time fields will be set to "0" in the Parameter access response.

| Table 4.4 | Function                 | SNVT type   | Variable Name |
|-----------|--------------------------|-------------|---------------|
| Network   | Parameter access command | SNVT_preset | nviParamCmd   |
| Variable  |                          | ·           |               |

#### Network Variable Input to the VLT

| Function                  | SNVT type   | Variable Name |
|---------------------------|-------------|---------------|
| Parameter access response | SNVT_preset | nvoParamResp  |

| Network     |
|-------------|
| Variable    |
| Output from |
| the VLT     |
|             |

Table 4.5 Network

| Table 4.6   | Exception Code | Interpretation                                       |
|-------------|----------------|------------------------------------------------------|
| Parameter   | 1              | Illegal function for the addressed node              |
| Access      | 2              | Illegal data address (i.e. illegal parameter number) |
| Error Codes | 3              | Illegal data value                                   |
|             | 6              | Busy                                                 |

For the following examples, the controller node has a Parameter access command SNVT preset called nvoParamCmd and a

Example 1: A controller node writes 40 Hz to the Bus Jog parameter (PNU 511) of the VLT. NOTE: The value 400 equals 40.0 Hz.

> Time 0 - Controller node sends the following parameter write request to the VLT.

called nviParamResp.

Parameter access response SNVT\_preset

Time 1 - The controller node receives the following parameter access response from the VLT.

nviParamResp.learn = 1.nviParamResp.selector = 511.nviParamResp.value[0] = 0.nviParamResp.value[1] = 0.nviParamResp.value[2] = 1 hex. nviParamResp.value[3] = 90 hex. nviParamResp.day = 0.nviParamResp.hour = 0.nviParamResp.minute = 0.nviParamResp.second = 0.nviParamResp.millisecond = 0.

\* Note: 2 could have been used.

nvoParamCmd.learn = 1.\*

nvoParamCmd.selector = 511.

nvoParamCmd.value[2] = 1 hex.

nvoParamCmd.value[3] = 90 hex.

nvoParamCmd.value[0] = 0.nvoParamCmd.value[1] = 0.

Example 3:

The controller node writes 3600.00 seconds to the Ramp time up parameter (PNU 215) of the VLT. NOTE: The value 360000 equals 3600.00 seconds and is the maximum value for the ramp times.

Time 0 - Controller node sends the following parameter write request to the VLT.

nvoParamCmd.learn = 1.\* nvoParamCmd.selector = 215. nvoParamCmd.value[0] = 0. nvoParamCmd.value[1] = 5 hex. nvoParamCmd.value[2] = 7E hex. nvoParamCmd.value[3] = 40 hex.

\* Note: 2 could have been used.

Time 1 - The controller node receives the following parameter access response from the VLT.

nviParamResp.learn = 1. nviParamResp.selector = 215. nviParamResp.value[0] = 0. nviParamResp.value[1] = 5 hex. nviParamResp.value[2] = 7E hex. nviParamResp.value[3] = 40 hex. nviParamResp.day = 0. nviParamResp.hour = 0. nviParamResp.minute = 0. nviParamResp.second = 0. nviParamResp.millisecond = 0.

A controller node writes 600 Hz to the Bus Jog 1 parameter (PNU 511) of the VLT. NOTE: 6000 (600.0 Hz) exceeds the parameter limits. Time 1 - The controller node receives the following parameter access response from the VLT.

Time 0 - Controller node sends the following parameter write request to the VLT.

nvoParamCmd.learn = 1.\* nvoParamCmd.selector = 511. nvoParamCmd.value[0] = 0. nvoParamCmd.value[1] = 0. nvoParamCmd.value[2] = 17 hex. nvoParamCmd.value[3] = 70 hex.

\* Note: 2 could have been used.

Time 1 - The controller node receives the

nviParamResp.learn = 1.

nviParamResp.selector = 511.

nviParamResp.value[1] = 0.nviParamResp.value[2] = 0.

nviParamResp.day = 0.

nviParamResp.hour = 0.

nviParamResp.minute = 0.

nviParamResp.second = 0.

nviParamResp.millisecond = 0.

nviParamResp.value[0] = FF hex.

nviParamResp.value[3] = 3 hex.

**Example 4:** A controller node reads the value of the Bus Jog 1 parameter (PNU 511) in the VLT. NOTE: 400 (40.0 Hz) is the value stored in parameter 511.

Time 0 - Controller node sends the following parameter read request to the VLT.

nvoParamCmd.learn = 0.\* nvoParamCmd.selector = 511. nvoParamCmd.value[0] = 0.\*\* nvoParamCmd.value[1] = 0. nvoParamCmd.value[2] = 0. nvoParamCmd.value[3] = 0. Time 1 - The controller node receives the following parameter access response from the VLT.

nviParamResp.learn = 0. nviParamResp.selector = 511. nviParamResp.value[0] = 0. nviParamResp.value[1] = 0. nviParamResp.value[2] = 1 hex. nviParamResp.value[3] = 90 hex. nviParamResp.day = 0. nviParamResp.hour = 0. nviParamResp.minute = 0. nviParamResp.second = 0. nviParamResp.millisecond = 0.

\* Note: 3 could have been used
\*\* Note : Any values in the value fields are ignored by the VLT for a read command.

Danfoss

### Standard Object Support

The VLT LonWorks option supports two standard objects and three SNVT's to support the LonMark standard object philosophy. The standard objects are the node object containing the Object request, Object status, and Object alarm and the controller object containing the network variables described in the preceding sections. The object request is a LonMark device used to obtain status and alarm information from a node.

It is not necessary for a controller to support these network variables. The Object request, Object status and Object alarm provide status and alarm information for controllers that only support this type of functionality. The status and alarm functions described in the preceeding sections contain more drive specific information than Object status and Object alarm.

- The VLT sends an Object status containing drive status information and an Object alarm containing fault information in response to the following Object requests: RQ\_NORMAL, RQ\_UPDATE\_STATUS, and RQ\_UPDATE\_ALARM. The nviRequest.object\_id should be set to "1" (controller node). nviRequest, nvoStatus and nvoAlarm are the network variables used for these functions.
- 2. The VLT sends an Object status containing a bit map of supported status fields in response to all other Object requests including undefined requests.
- 3. The VLT Object status supports the following status fields: invalid\_id, invalid\_request,open\_circuit, out\_of\_service, electrical\_fault, comm\_failure, manual\_control, and in\_alarm. All other fields are always set to "0".
- 4. The VLT sends an Object alarm following any set or reset of a drive fault condition.

| Table 4.7       | Function       | SNVT type        | Variable Name | Input/Output |
|-----------------|----------------|------------------|---------------|--------------|
| Network         | Object request | SNVT_obj_request | nviRequest    | Input        |
| Variables       | Object status  | SNVT_obj_status  | nvoStatus     | Output       |
| for Node Object | Object alarm   | SNVT_alarm       | nvoAlarm      | Output       |
| and Standard    |                |                  |               |              |
| Object support  |                |                  |               |              |

|                  |                          |                   |        | Size  | Conversion | Data |
|------------------|--------------------------|-------------------|--------|-------|------------|------|
| PNU              | Parameter Description    | Default Value     | Range  | Index | Index      | Туре |
| 812              | Digital input            |                   |        | 0     | 0          | 5    |
| 813              | Analog input             |                   |        | 0     | 0          | 3    |
| 814              | Analog input             |                   |        | 0     | 0          | 3    |
| 815              | Position                 |                   |        | 0     | 0          | 6    |
| 817              | Relay 01 function        | NO FUNC. (0)      | 0 - 2  | 0     | 0          | 5    |
| 818              | Relay 04 function        | NO FUNC. (0)      | 0 - 2  | 0     | 0          | 5    |
| 824              | Time-out function        | FREEZE (0)        | 0 - 4  | 4     | 0          | 5    |
| 927              | Parameter write access   | With PROFIBUS (1) | 0-1    | 0     | 0          | 6    |
| 928              | Process control access   | With PROFIBUS (1) | 0-1    | 0     | 0          | 6    |
| 970              | Setup select programming | SETUP = P001      | 0-6    | 0     | 0          | 5    |
| 971 <sup>s</sup> | Store data values        | OFF (0)           | ON/OFF | 0     | 0          | 5**  |

Danfoss

| 812-815<br>Data read-out                     | 812 Digital input<br>813 Analog input<br>814 Analog input<br>815 Position | binary code<br>10 V<br>20 mA<br>counter value | These values can be read only. The<br>master may ask for a value from a PNU<br>between 812 and 815.<br>No local access.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 817<br>Relay 01 function<br>(RELAY FUNC. 01) | Data Value:<br>★ No action<br>OFF<br>ON                                   | [0]<br>[1]<br>[2]                             | Is used for controlling the relay 01 from<br>the master. If "no action" is selected, the<br>relay will function according to the setting<br>of parameter 325.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 818<br>Relay 04 function<br>(RELAY FUNC. 04) | Data Value:<br>★ No action<br>OFF<br>ON                                   | [0]<br>[1]<br>[2]                             | Is used for controlling the relay 04 from<br>the master. If "no action" is selected, the<br>relay will function according to the setting<br>of parameter 326.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 824<br>Time-out function<br>(TIME-OUT FUNC.) | Data Value:<br>★Freeze<br>Stop<br>Jog<br>Max.<br>Run normal               | [0]<br>[1]<br>[2]<br>[3]<br>[4]               | The setting of this parameter determines<br>the behavior of the VLT following a bus<br>time-out. Parameters 502-508 must be<br>set.<br>Freeze:<br>The actual speed reference will be frozen.<br>Stop:<br>The motor will stop<br>Jog:<br>The motor will run with Jog speed<br>(parameter 213) if start signals are<br>present.<br>Max:<br>The motor will run with max. speed<br>(parameter 205) if start signals are<br>present.<br>Run normal:<br>The control word will be set to 043F HEX,<br>which makes it possible to control the<br>VLT via the terminals, depending on the<br>setting of parameters 502-508.<br><b>Warning:</b><br>The VLT will resume normal operation<br>when the communication is ok, this<br>means that the motor can start or |

change speed without warning.

| Danfe                                                                          | <del>کنڈ</del><br>VLT <sup>®</sup> 5000 LonWorks                                                                                                                  | ®                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 927<br>Access to<br>parameter change<br>(ACC PARA WRITE)                       | Data Value:<br>No LONWORKS<br>★ With LONWORKS                                                                                                                     | [0]<br>[1]                             | This parameter lets you determine from which place parameters may be altered.                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| 928<br>Access to<br>process control<br>(ACC PROC CTRL)                         | Data Value:<br>No LONWORKS<br>★ With LONWORKS                                                                                                                     | [0]<br>[1]                             | This parameter lets you determine from<br>which place control authority may be<br>exercised.                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| <b>970</b><br><b>Setup selection,</b><br><b>Programming</b><br>(SETUP PROGRAM) | Data Value:<br>Preprogrammed(FACTORY SET)<br>Setup 1 (SETUP 1)<br>Setup 2 (SETUP 2)<br>Setup 3 (SETUP 3)<br>Setup 4 (SETUP 4)<br>★ Setup = Par. 001(SETUP = P001) | [0]<br>[1]<br>[2]<br>[3]<br>[4]<br>[5] |                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| 971<br>Store data values                                                       | Data Value:<br>★ OFF<br>ON                                                                                                                                        | [O]<br>[1]                             | When the parameter is set to "ON" the<br>downloaded parameters are stored.<br>When finished, it automatically returns to<br>"OFF". Do not switch off the AC line before<br>the value changes to "OFF" (app. 15 sec.)<br>otherwise all changes are lost.<br>When using the keypad the function is<br>activated when "MENU" is pressed.<br>The function can only be activated with the<br>VLT in stop-mode and may not be activated |  |  |  |  |

cyclically.

Danfoss

Data Value:

16 bits Unsigned

Control word

|        | N<br>O                               | S                   |                      |                    |                     |                          | CONTROL WORD |                 |                                      |                    |            |                    |                       |                                   |            |                                                                                |  |  |  |  |
|--------|--------------------------------------|---------------------|----------------------|--------------------|---------------------|--------------------------|--------------|-----------------|--------------------------------------|--------------------|------------|--------------------|-----------------------|-----------------------------------|------------|--------------------------------------------------------------------------------|--|--|--|--|
| 0 / 1  | A C T – O N / R E V E R S E          | ETUP<br>SELECT<br>2 | SETUP<br>SELECT<br>1 | NO ACTION/CATCH-UP | NO ACTION/SLOVIDOVN | CTR DATA NOT VALID/VALID | JOG 2 OFF/ON | JOG 1<br>OFF/ON | NO ACT-ON-RESET                      | RAMP<br>STOP/START | ALWAYS = 1 | QUICK STOP/RAMP ON | MOTOR COASTING/ENABLE | A<br>L<br>W<br>A<br>Y<br>S<br>= 1 | ALWAYS = 1 | $\begin{array}{c} A \ L \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$ |  |  |  |  |
| $\mid$ | 15 14 13 12 11 10 09 08<br>VALUE [2] |                     |                      |                    |                     |                          |              |                 | 07 06 05 04 03 02 01 00<br>VALUE [3] |                    |            |                    |                       |                                   |            |                                                                                |  |  |  |  |

No local access.



Status word

Data Value: 16 Bits Unsigned No local access.

|       |                               | STATUS WORD      |                  |                                |                     |                               |                              |                                  |                    |                 |                                      |                                      |                           |                              |                            |                                                                                        |
|-------|-------------------------------|------------------|------------------|--------------------------------|---------------------|-------------------------------|------------------------------|----------------------------------|--------------------|-----------------|--------------------------------------|--------------------------------------|---------------------------|------------------------------|----------------------------|----------------------------------------------------------------------------------------|
| 0 / 1 | Т – МЕ R О K / L – М – Т – 15 | CURRENT OK/LIMIT | VOLTAGE OK/LIMIT | INVERTER OK/STALL AUTOSTART 12 | NOT RUNN-NG-RUNN-NG | OUT OF RANGE/FREQ IN RANGE 10 | LOCAL CONTROL/BUS CONTROL 09 | NOT ON REFERENCE/ON REFERENCE 08 | NO WARN-NG-WARN-NG | A L W A Y S = 0 | A<br>L<br>W<br>A<br>Y<br>S<br>=<br>0 | A<br>L<br>W<br>A<br>Y<br>S<br>=<br>0 | NO<br>FAULT/TRIPPED<br>03 | NOT<br>ENABLED/ENABLED<br>02 | UNIT NOT READY/READY<br>01 | C<br>T<br>R<br>N<br>O<br>T<br>R<br>E<br>A<br>D<br>Y<br>/<br>R<br>E<br>A<br>D<br>Y<br>Y |
|       | VALUE [2]                     |                  |                  |                                |                     |                               |                              |                                  | VALUE [3]          |                 |                                      |                                      |                           |                              |                            |                                                                                        |